博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
TensorFlow教程之API DOC 6.3.2. CLIENT
阅读量:7088 次
发布时间:2019-06-28

本文共 13772 字,大约阅读时间需要 45 分钟。

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权。

Running Graphs

Contents

This library contains classes for launching graphs and executing operations.

The  guide has examples of how a graph is launched in a .

Session management


class tf.Session

A class for running TensorFlow operations.

Session object encapsulates the environment in which Operation objects are executed, and Tensorobjects are evaluated. For example:

# Build a graph.a = tf.constant(5.0)b = tf.constant(6.0)c = a * b# Launch the graph in a session.sess = tf.Session()# Evaluate the tensor `c`.print sess.run(c)

A session may own resources, such as , , and . It is important to release these resources when they are no longer required. To do this, either invoke the  method on the session, or use the session as a context manager. The following two examples are equivalent:

# Using the `close()` method.sess = tf.Session()sess.run(...)sess.close()# Using the context manager.with tf.Session() as sess:  sess.run(...)

The [ConfigProto] () protocol buffer exposes various configuration options for a session. For example, to create a session that uses soft constraints for device placement, and log the resulting placement decisions, create a session as follows:

# Launch the graph in a session that allows soft device placement and# logs the placement decisions.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,                                        log_device_placement=True))

tf.Session.__init__(target='', graph=None, config=None)

Creates a new TensorFlow session.

If no graph argument is specified when constructing the session, the default graph will be launched in the session. If you are using more than one graph (created with tf.Graph() in the same process, you will have to use different sessions for each graph, but each graph can be used in multiple sessions. In this case, it is often clearer to pass the graph to be launched explicitly to the session constructor.

Args:
  • target: (Optional.) The execution engine to connect to. Defaults to using an in-process engine. At present, no value other than the empty string is supported.
  • graph: (Optional.) The Graph to be launched (described above).
  • config: (Optional.) A  protocol buffer with configuration options for the session.

tf.Session.run(fetches, feed_dict=None)

Runs the operations and evaluates the tensors in fetches.

This method runs one "step" of TensorFlow computation, by running the necessary graph fragment to execute every Operation and evaluate every Tensor in fetches, substituting the values in feed_dictfor the corresponding input values.

The fetches argument may be a list of graph elements or a single graph element, and these determine the return value of this method. A graph element can be one of the following types:

  • If the ith element of fetches is an , the ith return value will be None.
  • If the ith element of fetches is a , the ith return value will be a numpy ndarray containing the value of that tensor.
  • If the ith element of fetches is a , the ith return value will be a containing the value of that sparse tensor.

The optional feed_dict argument allows the caller to override the value of tensors in the graph. Each key in feed_dict can be one of the following types:

  • If the key is a , the value may be a Python scalar, string, list, or numpy ndarray that can be converted to the same dtype as that tensor. Additionally, if the key is a , the shape of the value will be checked for compatibility with the placeholder.
  • If the key is a , the value should be a .
Args:
  • fetches: A single graph element, or a list of graph elements (described above).
  • feed_dict: A dictionary that maps graph elements to values (described above).
Returns:

Either a single value if fetches is a single graph element, or a list of values if fetches is a list (described above).

Raises:
  • RuntimeError: If this Session is in an invalid state (e.g. has been closed).
  • TypeError: If fetches or feed_dict keys are of an inappropriate type.
  • ValueError: If fetches or feed_dict keys are invalid or refer to a Tensor that doesn't exist.

tf.Session.close()

Closes this session.

Calling this method frees all resources associated with the session.

Raises:
  • RuntimeError: If an error occurs while closing the session.

tf.Session.graph

The graph that was launched in this session.


tf.Session.as_default()

Returns a context manager that makes this object the default session.

Use with the with keyword to specify that calls to  or  should be executed in this session.

c = tf.constant(..)sess = tf.Session()with sess.as_default():  assert tf.get_default_session() is sess  print c.eval()

To get the current default session, use .

N.B. The as_default context manager does not close the session when you exit the context, and you must close the session explicitly.

c = tf.constant(...)sess = tf.Session()with sess.as_default():  print c.eval()# ...with sess.as_default():  print c.eval()sess.close()

Alternatively, you can use with tf.Session(): to create a session that is automatically closed on exiting the context, including when an uncaught exception is raised.

N.B. The default graph is a property of the current thread. If you create a new thread, and wish to use the default session in that thread, you must explicitly add a with sess.as_default(): in that thread's function.

Returns:

A context manager using this session as the default session.


class tf.InteractiveSession

A TensorFlow Session for use in interactive contexts, such as a shell.

The only difference with a regular Session is that an InteractiveSession installs itself as the default session on construction. The methods  and  will use that session to run ops.

This is convenient in interactive shells and , as it avoids having to pass an explicitSession object to run ops.

For example:

sess = tf.InteractiveSession()a = tf.constant(5.0)b = tf.constant(6.0)c = a * b# We can just use 'c.eval()' without passing 'sess'print c.eval()sess.close()

Note that a regular session installs itself as the default session when it is created in a with statement. The common usage in non-interactive programs is to follow that pattern:

a = tf.constant(5.0)b = tf.constant(6.0)c = a * bwith tf.Session():  # We can also use 'c.eval()' here.  print c.eval()

tf.InteractiveSession.__init__(target='', graph=None)

Creates a new interactive TensorFlow session.

If no graph argument is specified when constructing the session, the default graph will be launched in the session. If you are using more than one graph (created with tf.Graph() in the same process, you will have to use different sessions for each graph, but each graph can be used in multiple sessions. In this case, it is often clearer to pass the graph to be launched explicitly to the session constructor.

Args:
  • target: (Optional.) The execution engine to connect to. Defaults to using an in-process engine. At present, no value other than the empty string is supported.
  • graph: (Optional.) The Graph to be launched (described above).

tf.InteractiveSession.close()

Closes an InteractiveSession.


tf.get_default_session()

Returns the default session for the current thread.

The returned Session will be the innermost session on which a Session or Session.as_default()context has been entered.

N.B. The default session is a property of the current thread. If you create a new thread, and wish to use the default session in that thread, you must explicitly add a with sess.as_default(): in that thread's function.

Returns:

The default Session being used in the current thread.

Error classes


class tf.OpError

A generic error that is raised when TensorFlow execution fails.

Whenever possible, the session will raise a more specific subclass of OpError from the tf.errorsmodule.


tf.OpError.op

The operation that failed, if known.

N.B. If the failed op was synthesized at runtime, e.g. a Send or Recv op, there will be no corresponding object. In that case, this will return None, and you should instead use the to discover information about the op.

Returns:

The Operation that failed, or None.


tf.OpError.node_def

The NodeDef proto representing the op that failed.

Other Methods


tf.OpError.__init__(node_def, op, message, error_code)

Creates a new OpError indicating that a particular op failed.

Args:
  • node_def: The graph_pb2.NodeDef proto representing the op that failed.
  • op: The ops.Operation that failed, if known; otherwise None.
  • message: The message string describing the failure.
  • error_code: The error_codes_pb2.Code describing the error.

tf.OpError.error_code

The integer error code that describes the error.


tf.OpError.message

The error message that describes the error.


class tf.errors.CancelledError

Raised when an operation or step is cancelled.

For example, a long-running operation (e.g.  may be cancelled by running another operation (e.g. , or by . A step that is running such a long-running operation will fail by raising CancelledError.


tf.errors.CancelledError.__init__(node_def, op, message)

Creates a CancelledError.


class tf.errors.UnknownError

Unknown error.

An example of where this error may be returned is if a Status value received from another address space belongs to an error-space that is not known to this address space. Also errors raised by APIs that do not return enough error information may be converted to this error.


tf.errors.UnknownError.__init__(node_def, op, message, error_code=2)

Creates an UnknownError.


class tf.errors.InvalidArgumentError

Raised when an operation receives an invalid argument.

This may occur, for example, if an operation is receives an input tensor that has an invalid value or shape. For example, the  op will raise this error if it receives an input that is not a matrix, and the op will raise this error if the new shape does not match the number of elements in the input tensor.


tf.errors.InvalidArgumentError.__init__(node_def, op, message)

Creates an InvalidArgumentError.


class tf.errors.DeadlineExceededError

Raised when a deadline expires before an operation could complete.

This exception is not currently used.


tf.errors.DeadlineExceededError.__init__(node_def, op, message)

Creates a DeadlineExceededError.


class tf.errors.NotFoundError

Raised when a requested entity (e.g., a file or directory) was not found.

For example, running the  operation could raise NotFoundError if it receives the name of a file that does not exist.


tf.errors.NotFoundError.__init__(node_def, op, message)

Creates a NotFoundError.


class tf.errors.AlreadyExistsError

Raised when an entity that we attempted to create already exists.

For example, running an operation that saves a file (e.g. ) could potentially raise this exception if an explicit filename for an existing file was passed.


tf.errors.AlreadyExistsError.__init__(node_def, op, message)

Creates an AlreadyExistsError.


class tf.errors.PermissionDeniedError

Raised when the caller does not have permission to run an operation.

For example, running the  operation could raise PermissionDeniedError if it receives the name of a file for which the user does not have the read file permission.


tf.errors.PermissionDeniedError.__init__(node_def, op, message)

Creates a PermissionDeniedError.


class tf.errors.UnauthenticatedError

The request does not have valid authentication credentials.

This exception is not currently used.


tf.errors.UnauthenticatedError.__init__(node_def, op, message)

Creates an UnauthenticatedError.


class tf.errors.ResourceExhaustedError

Some resource has been exhausted.

For example, this error might be raised if a per-user quota is exhausted, or perhaps the entire file system is out of space.


tf.errors.ResourceExhaustedError.__init__(node_def, op, message)

Creates a ResourceExhaustedError.


class tf.errors.FailedPreconditionError

Operation was rejected because the system is not in a state to execute it.

This exception is most commonly raised when running an operation that reads a  before it has been initialized.


tf.errors.FailedPreconditionError.__init__(node_def, op, message)

Creates a FailedPreconditionError.


class tf.errors.AbortedError

The operation was aborted, typically due to a concurrent action.

For example, running a  operation may raise AbortedError if a operation previously ran.


tf.errors.AbortedError.__init__(node_def, op, message)

Creates an AbortedError.


class tf.errors.OutOfRangeError

Raised when an operation executed past the valid range.

This exception is raised in "end-of-file" conditions, such as when a  operation is blocked on an empty queue, and a  operation executes.


tf.errors.OutOfRangeError.__init__(node_def, op, message)

Creates an OutOfRangeError.


class tf.errors.UnimplementedError

Raised when an operation has not been implemented.

Some operations may raise this error when passed otherwise-valid arguments that it does not currently support. For example, running the  operation would raise this error if pooling was requested on the batch dimension, because this is not yet supported.


tf.errors.UnimplementedError.__init__(node_def, op, message)

Creates an UnimplementedError.


class tf.errors.InternalError

Raised when the system experiences an internal error.

This exception is raised when some invariant expected by the runtime has been broken. Catching this exception is not recommended.


tf.errors.InternalError.__init__(node_def, op, message)

Creates an InternalError.


class tf.errors.UnavailableError

Raised when the runtime is currently unavailable.

This exception is not currently used.


tf.errors.UnavailableError.__init__(node_def, op, message)

Creates an UnavailableError.


class tf.errors.DataLossError

Raised when unrecoverable data loss or corruption is encountered.

For example, this may be raised by running a  operation, if the file is truncated while it is being read.


tf.errors.DataLossError.__init__(node_def, op, message)

Creates a DataLossError.

你可能感兴趣的文章
【分块】bzoj1901 Zju2112 Dynamic Rankings
查看>>
tornado+jsonrpc
查看>>
[转载]为什么不推荐使用stop和suspend这两个方法?
查看>>
EL表达式调用函数
查看>>
Ubuntu开机自动禁用无线网络
查看>>
jquery实践1
查看>>
SSM整合初级 简单的增删改查
查看>>
【BZOJ】1731: [Usaco2005 dec]Layout 排队布局
查看>>
利用PowerShell 得到 进程总共占用的内存
查看>>
Oracle数据库安全(一)用户管理
查看>>
webpack4 系列教程(十一):字体文件处理
查看>>
【背包dp】自然数拆分Lunatic版
查看>>
CentOS中为新用户添加sudo权限
查看>>
HTML前端代码分析(暗链)
查看>>
Java程序员们值得一看的好书推荐
查看>>
hibernate继承实现
查看>>
网站侧栏跟随滚动代码
查看>>
Atlas框架介绍集成(一)
查看>>
Java集合框架(三)
查看>>
自定义高级版python线程池
查看>>